Groups acting on CAT(0) cube complexes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups acting on CAT(0) cube complexes

We show that groups satisfying Kazhdan’s property (T) have no unbounded actions on nite dimensional CAT(0) cube complexes, and deduce that there is a locally CAT(−1) Riemannian manifold which is not homotopy equivalent to any nite dimensional, locally CAT(0) cube complex. AMS Classi cation numbers Primary: 20F32 Secondary: 20E42, 20G20

متن کامل

Non-hyperbolic automatic groups and groups acting on CAT(0) cube complexes

This note is a brief summary of my talk that I gave at RIMS workshop “Complex Analysis and Topology of Discrete Groups and Hyperbolic Spaces.” See [4] for detail. If a group G has a finite K(G, 1) and does not contain any Baumslag–Solitar groups, is G hyperbolic? (See [1].) This is one of the most famous questions on hyperbolic groups. Probably, many people expect that the answer is negative, a...

متن کامل

Groups Acting on CAT (0) Square Complexes

We study groups acting on CAT (0) square complexes. In particular we show if Y is a nonpositively curved (in the sense of A. D. Alexandrov) finite square complex and the vertex links of Y contain no simple loop consisting of five edges, then any subgroup of π1(Y ) either is virtually free abelian or contains a free group of rank two. In addition we discuss when a group generated by two hyperbol...

متن کامل

Isometry Groups of Cat(0) Cube Complexes

Given a CAT(0) cube complex X, we show that if Aut(X) 6= Isom(X) then there exists a full subcomplex of X which decomposes as a product with R. As applications, we prove that ifX is δ-hyperbolic, cocompact and 1-ended, then Aut(X) = Isom(X) unless X is quasi-isometric to H, and extend the rank-rigidity result of Caprace–Sageev to any lattice Γ ≤ Isom(X).

متن کامل

Coxeter Groups Act on Cat(0) Cube Complexes

We show that any finitely generated Coxeter group acts properly discontinuously on a locally finite, finite dimensional CAT(0) cube complex. For any word hyperbolic or right angled Coxeter group we prove that the cubing is cocompact. We show how the local structure of the cubing is related to the partial order studied by Brink and Howlett in their proof of automaticity for Coxeter groups. In hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 1997

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.1997.1.1